Kinetic model for the finite-time thermodynamics of small heat engines

Angelo VULPIANI in collaboration with L. Cerino and A. Puglisi

Dip Fisica - Univ. Sapienza Roma and Centro Interdisciplinare "B Segre", Accademia dei Lincei

2017

Outline of the talk

Heat Engines: general considerations

Heat Engines: general considerations

Desiderata

- Predict the dependence of the integrated fluxes W and Q on \(\tau\);
- ▶ Take into account fluctuations (e.g. predict P(W));

Beyond standard thermodynamics: two possible approaches

Stochastic Thermodynamics

- N = 1 particle (Langevin equation)
- External time-dependent potential
- Interaction with a reservoir (thermal noise)

Beyond standard thermodynamics: two possible approaches

Stochastic Thermodynamics

- N = 1 particle (Langevin equation)
- External time-dependent potential
- Interaction with a reservoir (thermal noise)

Macroscopic Fluct. Theory

- N ≫ 1 particles
- ► Hydrodynamical description:
 - density field $\rho(\mathbf{x}, t)$,
 - velocity field $u(\mathbf{x}, t)$,
 - current field $j(\mathbf{x}, \mathbf{t})$.
- ► Thermodynamics ⇔ external fields and special boundary conditions (thermostats).

Beyond standard thermodynamics: two possible approaches

Stochastic Thermodynamics

- N = 1 particle (Langevin equation)
- External time-dependent potential
- Interaction with a reservoir (thermal noise)

...in the middle

Macroscopic Fluct. Theory

- $ightharpoonup N \gg 1$ particles
- ► Hydrodynamical description:
 - density field $\rho(\mathbf{x}, t)$,
 - velocity field $u(\mathbf{x}, t)$,
 - current field $j(\mathbf{x}, \mathbf{t})$.
- ► Thermodynamics ⇔ external fields and special boundary conditions (thermostats).

A paradigmatic small system

A system composed of $N \sim \mathcal{O}(10^2)$ degrees of freedom

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \frac{P^2}{2M} + FY$$

(+ elastic collision between particles and piston)

(+ thermal wall on the left side at temperature T_o)

Is it possible to extract mechanical work from this system with a cyclical protocol?

Heat Engine: the Ericsson cycle

Heat Engine: the Ericsson cycle

In each segment:

$$W = \int dt \frac{\partial \mathcal{H}}{\partial t} = \int dt \ \dot{F} X(t)$$

$$Q = \Delta \mathcal{H} - W$$

Results of MD simulations

[L.Cerino, A. Puglisi and A. Vulpiani, PRE E 91, 032128 (2015)]

Thermodynamics forces:

$$\delta = \frac{T_H - T_C}{T_H + T_C} = 0.08$$

$$\epsilon = \frac{F_H - F_L}{F_H + F_I} = 0.1$$

Coarse-graining: can we understand this behavior?

► Step 1

Identify the relevant (slow-varying) variables of the system.

Coarse-graining: can we understand this behavior?

► Step 1
Identify the relevant (slow-varying) variables of the system.

► Step 2
Derive a set of coupled Langevin equations for these variables;

Coarse-graining: can we understand this behavior?

▶ Step 1

Identify the relevant (slow-varying) variables of the system.

► Step 2

Derive a set of coupled Langevin equations for these variables;

▶ Step 3

Use stochastic thermodynamics to derive an explicit expression for thermodyn. quantities $(W, Q, \eta \dots)$ and associated fluctuations.

Model with 3 Macroscopic Variables

A coarse grained description is possible in terms of:

- ► X piston position
- V piston velocity
- ▶ T gas kin. energy per particle

$$\mathbf{y} = (X - X_{eq}(t), V, T - T_{eq}(t))$$

Linear time-dependent Langevin eqn.

$$\dot{\mathbf{y}} = \mathbf{A}(\mathbf{t}) \cdot \mathbf{y} + \mathbf{B}(\mathbf{t}) \cdot \boldsymbol{\xi} \leftarrow \text{white noise}$$

Model with 3 Macroscopic Variables

A coarse grained description is possible in terms of:

- X piston position
- V piston velocity
- T gas kin. energy per particle

$$\mathbf{y} = (X - X_{eq}(t), V, T - T_{eq}(t))$$

Linear time-dependent Langevin eqn.

$$\dot{\mathbf{y}} = \mathbf{A}(\mathbf{t}) \cdot \mathbf{y} + \mathbf{B}(\mathbf{t}) \cdot \boldsymbol{\xi} \leftarrow \text{white noise}$$

▶ **A** is determined via kinetic theory considerations (collisions gas ↔ piston and gas ↔ thermostat).

Model with 3 Macroscopic Variables

A coarse grained description is possible in terms of:

- X piston position
- V piston velocity
- ▶ T gas kin. energy per particle

$$\mathbf{y} = (X - X_{eq}(t), V, T - T_{eq}(t))$$

Linear time-dependent Langevin eqn.

$$\dot{\mathbf{y}} = \mathbf{A}(\mathbf{t}) \cdot \mathbf{y} + \mathbf{B}(\mathbf{t}) \cdot \boldsymbol{\xi} \leftarrow \text{white noise}$$

- ► A is determined via kinetic theory considerations (collisions gas ↔ piston and gas ↔ thermostat).
- ▶ **B** is determined a *fortiori* to restore detailed balance with equilibrium distribution.

Comparison with MD simulations

- Av. values: Good qualitative agreement (sign inversion, maximum...)
- Fluctuations: Approx.
 Gaussian behaviour and
 same stdey.

Comparison with MD simulations

- ► Av. values: Good qualitative agreement (sign inversion, maximum...)
- Fluctuations: Approx.
 Gaussian behaviour and same stdev.
- Discrepancies: Effect of gas inhomogeneities and non-linear effects.

An even simpler model...

We can pass from 3 variables \rightarrow 2 variables by simply fixing $T(t) = T_o(t)$

$$\frac{dX}{dt} = V$$

$$\frac{dV}{dt} = -k(t)(X - X_0(t)) - \gamma(t)V + \sqrt{\frac{2\gamma k_B T_o(t)}{M}}\xi$$

$$k(t) = \frac{F(t)^2(m+M)}{M^2Nk_BT_o(t)} \qquad \gamma(t) = \frac{2F(t)}{M}\sqrt{\frac{2m}{\pi k_BT_o(t)}}$$
$$X_0(t) = (N+1)\frac{k_BT_o(t)}{F(t)}$$

An even simpler model...

We can pass from 3 variables \rightarrow 2 variables by simply fixing $T(t) = T_o(t)$

$$\frac{dX}{dt} = V$$

$$\frac{dV}{dt} = -k(t)(X - X_0(t)) - \gamma(t)V + \sqrt{\frac{2\gamma k_B T_o(t)}{M}}\xi$$

► An important remark

The energy of the system is "imported" from the molecular model: $E(t) = \frac{1}{2}NT(t) + F(t)X(t) + \frac{1}{2}MV^2$.

In principle
$$E(t)$$
 is different from the potential $U(t) = \frac{1}{2} (MV^2 + k(t)(X - X_0)^2)$.

...to obtain analytic formulas!

With a simpler protocol

$$T_o(t) = T_0 \left[1 + \delta \sin \left(\frac{2\pi t}{\tau} \right) \right]$$
 $F(t) = F_0 \left[1 + \epsilon \cos \left(\frac{2\pi t}{\tau} \right) \right]$

An analytic expression for P(W) (in the engine regime for small ϵ and δ): Gaussian!

...to obtain analytic formulas!

With a simpler protocol

$$T_o(t) = T_0 \left[1 + \delta \sin \left(\frac{2\pi t}{\tau} \right) \right]$$
 $F(t) = F_0 \left[1 + \epsilon \cos \left(\frac{2\pi t}{\tau} \right) \right]$

An analytic expression for P(W) (in the engine regime for small ϵ and δ): Gaussian!

Linear regime and Onsager-coefficients

► Total entropy production

$$\Delta S = -\int_0^\tau \frac{\left\langle \dot{E}(t) - \dot{W}(t) \right\rangle}{T(t)} dt$$

Linear regime and Onsager-coefficients

► Total entropy production

$$\Delta S = -\int_0^{\tau} \frac{\left\langle \dot{E}(t) - \dot{W}(t) \right\rangle}{T(t)} dt = J_1 \epsilon + J_2 \delta$$

Linear regime and Onsager-coefficients

Total entropy production

$$\Delta S = -\int_0^{ au} rac{\left\langle \dot{E}(t) - \dot{W}(t)
ight
angle}{T(t)} dt = J_1 \epsilon + J_2 \delta$$

▶ Physical interpretation (Brandner, Saito and Seifert arXiv preprint (2015)):

$$J_1 = -rac{W}{\epsilon T_C}$$
 $J_2 = rac{T_C + T_H}{T_C T_H} \int_0^{ au} \gamma(t) \dot{Q}(t) dt$

where $\gamma(t)$ is a smoothing function. E.g. with two thermostats $\gamma(t)=1$ if $T=T_H$ and $\gamma(t)=0$ if $T=T_C$.

$$\Delta S = J_1 \epsilon + J_2 \delta$$

▶ In the linear regime:

$$\left(\begin{array}{c}J_1\\J_2\end{array}\right) = \left(\begin{array}{cc}L_{11} & L_{12}\\L_{21} & L_{22}\end{array}\right) \left(\begin{array}{c}\epsilon\\\delta\end{array}\right)$$

$$\Delta S = J_1 \epsilon + J_2 \delta$$

► In the linear regime: 2V

$$\begin{pmatrix} J_1 \\ J_2 \end{pmatrix} = A \left(\frac{2\pi}{\tau} \right) \begin{pmatrix} \sin \phi \left(\frac{2\pi}{\tau} \right) & -\cos \phi \left(\frac{2\pi}{\tau} \right) \\ \cos \phi \left(\frac{2\pi}{\tau} \right) & \sin \phi \left(\frac{2\pi}{\tau} \right) \end{pmatrix} \begin{pmatrix} \epsilon \\ \delta \end{pmatrix}$$

$$\Delta S = J_1 \epsilon + J_2 \delta$$

▶ In the linear regime: 2V

$$\begin{pmatrix} J_1 \\ J_2 \end{pmatrix} = A \left(\frac{2\pi}{\tau}\right) \begin{pmatrix} \sin\phi\left(\frac{2\pi}{\tau}\right) & -\cos\phi\left(\frac{2\pi}{\tau}\right) \\ \cos\phi\left(\frac{2\pi}{\tau}\right) & \sin\phi\left(\frac{2\pi}{\tau}\right) \end{pmatrix} \begin{pmatrix} \epsilon \\ \delta \end{pmatrix}$$

 The Onsager coefficients have the right symmetries (derived from time-reversal);

$$\Delta S = J_1 \epsilon + J_2 \delta$$

▶ In the linear regime: 2V

$$\begin{pmatrix} J_1 \\ J_2 \end{pmatrix} = A \left(\frac{2\pi}{\tau}\right) \begin{pmatrix} \sin\phi\left(\frac{2\pi}{\tau}\right) & -\cos\phi\left(\frac{2\pi}{\tau}\right) \\ \cos\phi\left(\frac{2\pi}{\tau}\right) & \sin\phi\left(\frac{2\pi}{\tau}\right) \end{pmatrix} \begin{pmatrix} \epsilon \\ \delta \end{pmatrix}$$

- ► The Onsager coefficients have the right symmetries (derived from time-reversal);
- ▶ $\Delta S \rightarrow 0$ for $\tau \rightarrow \infty$.

Onsager Coeff. in the molecular model

► Efficiency:

$$\eta = -\frac{W}{Q_{in}} \le \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta$$

where
$$\delta = \frac{T_H - T_C}{T_H + T_C}$$
.

► Efficiency:

$$\eta = -\frac{W}{Q_{in}} \le \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta$$

where
$$\delta = \frac{T_H - T_C}{T_H + T_C}$$
.

▶ Carnot efficiency is attained only in the quasi-static limit $\tau \to \infty$. . .

► Efficiency:

$$\eta = -\frac{W}{Q_{in}} \le \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta$$

where $\delta = \frac{T_H - T_C}{T_H + T_C}$.

- ▶ Carnot efficiency is attained only in the quasi-static limit $\tau \to \infty$...
- ... but when $\tau = \infty$, the output power vanishes!

► Efficiency:

$$\eta = -\frac{W}{Q_{in}} \le \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta$$

where $\delta = \frac{T_H - T_C}{T_H + T_C}$.

- ▶ Carnot efficiency is attained only in the quasi-static limit $\tau \to \infty$...
- ... but when $\tau = \infty$, the output power vanishes! \Rightarrow
- $\tilde{\eta} = \text{Efficiency at max. power:}$

Efficiency:

$$\eta = -\frac{W}{Q_{in}} \le \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta$$

where $\delta = \frac{T_H - T_C}{T_H + T_C}$.

- ▶ Carnot efficiency is attained only in the quasi-static limit $\tau \to \infty$...
- ▶ ... but when $\tau = \infty$, the output power vanishes! \Rightarrow
- ▶ $\tilde{\eta}$ = Efficiency at max. power: ...but maximum with respect to which parameter????

lacksquare Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

- lacksquare Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):
 - 1. Simmetry of Onsager coefficients: $L_{12} = L_{21}$

- lacksquare Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):
 - 1. Simmetry of Onsager coefficients: $L_{12} = L_{21}$
 - 2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11}L_{22}}$;

- lacksquare Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):
 - 1. Simmetry of Onsager coefficients: $L_{12} = L_{21}$
 - 2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11}L_{22}}$;

$$ilde{\eta} \leq \eta_{\mathsf{CA}} = 1 - \sqrt{\frac{T_{\mathsf{C}}}{T_{\mathsf{H}}}} pprox \frac{\eta_{\mathsf{c}}}{2}$$

- lacksquare Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):
 - 1. Simmetry of Onsager coefficients: $L_{12} = L_{21}$ $L_{12} = -L_{21}$
 - 2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11}L_{22}}$;

$$ilde{\eta} \leq \eta_{\mathsf{CA}} = 1 - \sqrt{\frac{T_{\mathsf{C}}}{T_{\mathsf{H}}}} pprox \frac{\eta_{\mathsf{c}}}{2}$$

- lacksquare Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):
 - 1. Simmetry of Onsager coefficients: $L_{12} = L_{21}$ $L_{12} = -L_{21}$
 - 2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11}L_{22}}$; Depends on $\tau!$

$$ilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} pprox \frac{\eta_c}{2}$$

- lacksquare Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):
 - 1. Simmetry of Onsager coefficients: $L_{12} = L_{21}$ $L_{12} = -L_{21}$
 - 2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11}L_{22}}$; Depends on $\tau!$

$$ilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_c}{2}$$
 (?)

- lacksquare Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):
 - 1. Simmetry of Onsager coefficients: $L_{12} = L_{21}$ $L_{12} = -L_{21}$
 - 2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11}L_{22}}$; Depends on $\tau!$

$$ilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_c}{2}$$
 (?)

► Violated outside the linear regime (Schmiedl and Seifert, EuroPhys. Lett. (2008))

- lacksquare Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):
 - 1. Simmetry of Onsager coefficients: $L_{12} = L_{21}$ $L_{12} = -L_{21}$
 - 2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11}L_{22}}$; Depends on $\tau!$

$$ilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_c}{2}$$
 (?)

- ► Violated outside the linear regime (Schmiedl and Seifert, EuroPhys. Lett. (2008))
- What about the time τ of the cycle?

Efficiency at τ -maximum power

Power:
$$w=-\frac{W}{\tau}=-\epsilon\frac{T_0J_1}{\tau}$$
 Efficiency: $\eta=-\frac{2\epsilon J_1}{J_2}\to 2\delta \ \tau\to \infty$

Efficiency at au-maximum power

Power:
$$w=-\frac{W}{\tau}=-\epsilon\frac{T_0J_1}{\tau}$$
 Efficiency: $\eta=-\frac{2\epsilon J_1}{J_2}\to 2\delta \ \tau\to \infty$

Efficiency at maximum w with respect to au at different values of ϵ

Efficiency at au-maximum power

Power:
$$w=-\frac{W}{\tau}=-\epsilon\frac{T_0J_1}{\tau}$$
 Efficiency: $\eta=-\frac{2\epsilon J_1}{J_2}\to 2\delta$ $\tau\to\infty$

Efficiency at maximum w with respect to au at different values of ϵ

Summarizing...

- ▶ Rich phenomenology (due to $N \neq 1$);
- ▶ Fluctuating thermodynamic quantities (due to $N \neq \infty$);
- Non trivial Langevin description (e.g. impossible to define energy from the Lang. Eq.).

A good insight into the thermodynamics of small systems!

Thank you for the attention!