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Desiderata

» Predict the dependence of the integrated fluxes W and Q on
T,

» Take into account fluctuations (e.g. predict P(W));



Beyond standard thermodynamics: two
possible approaches

Stochastic Thermodynamics‘

» N =1 particle (Langevin
equation)

» External time-dependent
potential

» Interaction with a reservoir
(thermal noise)
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Stochastic Thermodynamics‘

» N =1 particle (Langevin
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A paradigmatic small system

A system composed of N ~ (O(10?) degrees of freedom
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Is it possible to extract mechanical work from this system with a
cyclical protocol?
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Heat Engine: the Ericsson cycle
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Results of MD simulations
[L.Cerino, A. Puglisi and A. Vulpiani, PRE E 91, 032128 (2015)]
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Coarse-graining: can we understand this
behavior?

» Step 1
Identify the relevant (slow-varying) variables of the system.
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Coarse-graining: can we understand this
behavior?

» Step 1
Identify the relevant (slow-varying) variables of the system.

» Step 2
Derive a set of coupled Langevin equations for these variables;

» Step 3
Use stochastic thermodynamics to derive an explicit expres-

sion for thermodyn. quantities (W, Q,7...) and associated
fluctuations.




Model with 3 Macroscopic Variables

A coarse grained description is possible in terms of:
» X piston position
» V piston velocity
» T gas kin. energy per particle

y = (X = Xeg(t), V, T = Teq(t))

Linear time-dependent Langevin eqgn.

y = A(t) -y + B(t) - £ < white noise
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» X piston position
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Linear time-dependent Langevin eqgn.
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» A is determined via kinetic theory considerations (collisions
gas < piston and gas <> thermostat).



Model with 3 Macroscopic Variables

A coarse grained description is possible in terms of:
» X piston position
» V piston velocity
» T gas kin. energy per particle
y = (X = Xeq(t),V, T — Teq(t))

Linear time-dependent Langevin eqgn.

y = A(t) -y + B(t) - £ < white noise

» A is determined via kinetic theory considerations (collisions
gas < piston and gas <> thermostat).

» B is determined a fortiori to restore detailed balance with
equilibrium distribution.



Comparison with MD simulations
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An even simpler model...

We can pass from 3 variables — 2 variables by simply fixing

T(t) = To(t)
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An even simpler model...

We can pass from 3 variables — 2 variables by simply fixing
T(t) = To(t)

dX
i %4
I (X~ Xo(1) v+ 2T

» An important remark

The energy of the system is “imported” from the molecular
model: E(t) = INT(t) + F(t)X(t) + 2MV2.

In principle E(t) is different from the potential
U(t) = 3 (MV2 + k(t)(X — Xo)?).




...to obtain analytic formulas!
With a simpler protocol
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An analytic expression for P(W) (in the engine regime for small e
and ¢): Gaussian!
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Linear regime and Onsager-coefficients

» Total entropy production
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Linear regime and Onsager-coefficients

» Total entropy production

AS = — /OT <E(t)T_(t‘;i/(t)>dt = Jie+ Jo

> PhySIcal interpretation (Brandner, Saito and Seifert arXiv preprint (2015)).

w
=
! GTC
TC+TH/T :
bh=—"— t)Q(t) dt
=TT [T man

where ~(t) is a smoothing function. E.g. with two
thermostats v(t) =1if T = Ty and v(t) =0if T = T¢.



Onsager coefficients in the 2V Model
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> In the linear regime:
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Onsager coefficients in the 2V Model

AS = J1€ + J25

> In the linear regime: 2V
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» The Onsager coefficients have the right symmetries (derived
from time-reversal);



Onsager coefficients in the 2V Model

AS = J1€ + J25

> In the linear regime: 2V
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» The Onsager coefficients have the right symmetries (derived

from time-reversal);

» AS — 0 for 7 — 0.
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Onsager Coeff. in the molecular model
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Efficiency at maximum power

» Efficiency:
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Efficiency at maximum power

Efficiency:
Tc
e T
where § = ;::L;g

Carnot efficiency is attained only in the quasi-static limit
T — 00...

... but when 7 = oo, the output power vanishes! =
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Efficiency at maximum power

Efficiency:
Tc
K Qin — e Th
where § = ;Z:L;g

Carnot efficiency is attained only in the quasi-static limit
T — 00...

... but when 7 = oo, the output power vanishes! =

7) = Efficiency at max. power: ...but maximum with respect
to which parameter????



Efficiency at maximum power: General
Results in the Linear Regime

» Max. with I’eSpeCt to e x AF (Van Den Broeck, Phys. Rev. Lett. (2005)).
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Efficiency at maximum power: General
Results in the Linear Regime

> MaX. Wlth respect to € X AF (Van Den Broeck, Phys. Rev. Lett. (2005)).

1. Simmetry of Onsager coefficients:+t=-4or L1o = — Lo
2. Strong Coupling: Li» ~ +/L11Ly; Depends on 7!

. Tc
1<nca=1-— TfH%% (7)

» Violated outside the linear regime (schmiedi and Seifert, EuroPhys. Lett. (2008))

» What about the time 7 of the cycle?



Efficiency at 7-maximum power
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Efficiency at 7-maximum power

w To 1
Power: w = —— = —¢
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Linear Regime?

Efficiency at maximum w with respect to 7 at different values of ¢



Summarizing...

» Rich phenomenology (due to N # 1);
» Fluctuating thermodynamic quantities (due to N # c0);

» Non trivial Langevin description (e.g. impossible to define
energy from the Lang. Eq.).

A good insight into the thermodynamics of small
systems!



Thank you for the attention!



