Kinetic model for the finite-time thermodynamics of small heat engines

Angelo VULPIANI

in collaboration with L. Cerino and A. Puglisi

Dip Fisica - Univ. Sapienza Roma and Centro Interdisciplinare ”B Segre”, Accademia dei Lincei

2017
Outline of the talk

1. Irreversible Heat Engines
2. Coarse Graining - Modelling of small systems
3. Efficiency at maximum power

Molecular model of a piston (Simulations)
Heat Engines: general considerations

System

\[E(t) \]

Ext.

\[\dot{Q}(t) \]

Control

\[\lambda(t) \]

\[\dot{W}(t) \]

Total time of the cycle

\[\tau \]

\[T_o(t) \]
Heat Engines: general considerations

System
\[E(t) \]
Ext.
\[\dot{Q}(t) \]
Control
\[\lambda(t) \]
\[\dot{W}(t) \]

\[T_0(t) \]

\[\tau \] Total time of the cycle

Desiderata

- Predict the dependence of the integrated fluxes \(W \) and \(Q \) on \(\tau \);
- Take into account fluctuations (e.g. predict \(P(W) \));
Beyond standard thermodynamics: two possible approaches

Stochastic Thermodynamics
- $N = 1$ particle (*Langevin equation*)
- External time-dependent potential
- Interaction with a reservoir (thermal noise)

![Diagram of a particle with forces and temperatures](image)
Beyond standard thermodynamics: two possible approaches

Stochastic Thermodynamics
- $N = 1$ particle (*Langevin equation*)
- External time-dependent potential
- Interaction with a reservoir (thermal noise)

Macroscopic Fluct. Theory
- $N \gg 1$ particles
- Hydrodynamical description:
 - density field $\rho(x, t)$,
 - velocity field $u(x, t)$,
 - current field $j(x, t)$.
- Thermodynamics \Leftrightarrow external fields and special boundary conditions (*thermostats*).
Beyond standard thermodynamics: two possible approaches

Stochastic Thermodynamics
- $N = 1$ particle (*Langevin equation*)
- External time-dependent potential
- Interaction with a reservoir (thermal noise)

Macroscopic Fluct. Theory
- $N \gg 1$ particles
- Hydrodynamical description:
 - density field $\rho(x, t)$,
 - velocity field $u(x, t)$,
 - current field $j(x, t)$.
- Thermodynamics \Leftrightarrow external fields and special boundary conditions (*thermostats*).
A paradigmatic small system

A system composed of $N \sim \mathcal{O}(10^2)$ degrees of freedom

Is it possible to extract mechanical work from this system with a cyclical protocol?
Heat Engine: the Ericsson cycle
Heat Engine: the Ericsson cycle

In each segment:

\[W = \int dt \frac{\partial \mathcal{H}}{\partial t} = \int dt \dot{F} X(t) \]

\[Q = \Delta \mathcal{H} - W \]
Results of MD simulations

[L.Cerino, A. Puglisi and A. Vulpiani, PRE E 91, 032128 (2015)]

Thermodynamics forces:

\[
\delta = \frac{T_H - T_C}{T_H + T_C} = 0.08
\]

\[
\epsilon = \frac{F_H - F_L}{F_H + F_L} = 0.1
\]
Coarse-graining: can we understand this behavior?

Step 1
Identify the relevant (slow-varying) variables of the system.
Coarse-graining: can we understand this behavior?

- **Step 1**
 Identify the relevant (slow-varying) variables of the system.

- **Step 2**
 Derive a set of coupled Langevin equations for these variables;
Coarse-graining: can we understand this behavior?

► **Step 1**
Identify the relevant (slow-varying) variables of the system.

► **Step 2**
Derive a set of coupled Langevin equations for these variables;

► **Step 3**
Use stochastic thermodynamics to derive an explicit expression for thermodyn. quantities ($W, Q, \eta \ldots$) and associated fluctuations.
Model with 3 Macroscopic Variables

A coarse grained description is possible in terms of:

- \(X \) piston position
- \(V \) piston velocity
- \(T \) gas kin. energy per particle

\[
y = (X - X_{eq}(t), V, T - T_{eq}(t))
\]

Linear time-dependent Langevin eqn.

\[
\dot{y} = A(t) \cdot y + B(t) \cdot \xi \leftarrow \text{white noise}
\]
A coarse grained description is possible in terms of:

- X piston position
- V piston velocity
- T gas kin. energy per particle

$$y = (X - X_{eq}(t), V, T - T_{eq}(t))$$

Linear time-dependent Langevin eqn.

$$\dot{y} = A(t) \cdot y + B(t) \cdot \xi \leftarrow \text{white noise}$$

- A is determined via kinetic theory considerations (collisions gas ↔ piston and gas ↔ thermostat).
Model with 3 Macroscopic Variables

A coarse grained description is possible in terms of:

- X piston position
- V piston velocity
- T gas kin. energy per particle

$$y = (X - X_{eq}(t), V, T - T_{eq}(t))$$

Linear time-dependent Langevin eqn.

$$\dot{y} = A(t) \cdot y + B(t) \cdot \xi \leftarrow \text{white noise}$$

- A is determined via kinetic theory considerations (collisions gas ↔ piston and gas ↔ thermostat).
- B is determined a fortiori to restore detailed balance with equilibrium distribution.
Comparison with MD simulations

- Av. values: Good qualitative agreement (sign inversion, maximum...)
- Fluctuations: Approx. Gaussian behaviour and same stdev.
Comparison with MD simulations

- Av. values: Good qualitative agreement (sign inversion, maximum...)
- Fluctuations: Approx. Gaussian behaviour and same stdev.
- Discrepancies: Effect of gas inhomogeneities and non-linear effects.
An even simpler model...

We can pass from 3 variables → 2 variables by simply fixing $T(t) = T_0(t)$

$$\frac{dX}{dt} = V$$

$$\frac{dV}{dt} = -k(t)(X - X_0(t)) - \gamma(t)V + \sqrt{\frac{2\gamma k_B T_0(t)}{M}} \xi$$

$$k(t) = \frac{F(t)^2(m + M)}{M^2 Nk_B T_0(t)} \quad \gamma(t) = \frac{2F(t)}{M} \sqrt{\frac{2m}{\pi k_B T_0(t)}}$$

$$X_0(t) = (N + 1) \frac{k_B T_0(t)}{F(t)}$$
An even simpler model...

We can pass from 3 variables \(\rightarrow \) 2 variables by simply fixing \(T(t) = T_0(t) \)

\[
\begin{align*}
\frac{dX}{dt} &= V \\
\frac{dV}{dt} &= -k(t)(X - X_0(t)) - \gamma(t)V + \sqrt{\frac{2\gamma k_B T_0(t)}{M}} \xi
\end{align*}
\]

▶ An important remark

The energy of the system is “imported” from the molecular model: \(E(t) = \frac{1}{2} NT(t) + F(t)X(t) + \frac{1}{2} MV^2 \).

In principle \(E(t) \) is different from the potential \(U(t) = \frac{1}{2} (MV^2 + k(t)(X - X_0)^2) \).
...to obtain analytic formulas!

With a simpler protocol

\[
T_{o}(t) = T_0 \left[1 + \delta \sin \left(\frac{2\pi t}{\tau} \right) \right]
\]

\[
F(t) = F_0 \left[1 + \epsilon \cos \left(\frac{2\pi t}{\tau} \right) \right]
\]

An analytic expression for \(P(W) \) (in the engine regime for small \(\epsilon \) and \(\delta \)): Gaussian!
...to obtain analytic formulas!

With a simpler protocol

\[T_o(t) = T_0 \left[1 + \delta \sin \left(\frac{2\pi t}{\tau} \right) \right] \]

\[F(t) = F_0 \left[1 + \epsilon \cos \left(\frac{2\pi t}{\tau} \right) \right] \]

An analytic expression for \(P(W) \) (in the engine regime for small \(\epsilon \) and \(\delta \)): Gaussian!
Linear regime and Onsager-coefficients

- Total entropy production

\[\Delta S = - \int_{0}^{\tau} \frac{\langle \dot{E}(t) - \dot{W}(t) \rangle}{T(t)} dt \]
Linear regime and Onsager-coefficients

- Total entropy production

\[
\Delta S = - \int_0^\tau \frac{\langle \dot{E}(t) - \dot{W}(t) \rangle}{T(t)} \, dt = J_1 \epsilon + J_2 \delta
\]
Linear regime and Onsager-coefficients

Total entropy production

\[\Delta S = - \int_{0}^{\tau} \left\langle \dot{E}(t) - \dot{W}(t) \right\rangle \frac{1}{T(t)} dt = J_1 \epsilon + J_2 \delta \]

Physical interpretation (Brandner, Saito and Seifert arXiv preprint (2015)):

\[J_1 = - \frac{W}{\epsilon T_C} \]
\[J_2 = \frac{T_C + T_H}{T_C T_H} \int_{0}^{\tau} \gamma(t) \dot{Q}(t) dt \]

where \(\gamma(t) \) is a smoothing function. E.g. with two thermostats \(\gamma(t) = 1 \) if \(T = T_H \) and \(\gamma(t) = 0 \) if \(T = T_C \).
Onsager coefficients in the 2V Model

\[\Delta S = J_1 \epsilon + J_2 \delta \]

- In the linear regime:

\[
\begin{pmatrix} J_1 \\ J_2 \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} \epsilon \\ \delta \end{pmatrix}
\]

\[\Delta S \rightarrow 0 \text{ for } \tau \rightarrow \infty \]
Onsager coefficients in the 2V Model

\[\Delta S = J_1 \epsilon + J_2 \delta \]

- In the linear regime: 2V

\[
\begin{pmatrix}
J_1 \\
J_2
\end{pmatrix}
= A \left(\frac{2\pi}{\tau} \right)
\begin{pmatrix}
\sin \phi \left(\frac{2\pi}{\tau} \right) & - \cos \phi \left(\frac{2\pi}{\tau} \right) \\
\cos \phi \left(\frac{2\pi}{\tau} \right) & \sin \phi \left(\frac{2\pi}{\tau} \right)
\end{pmatrix}
\begin{pmatrix}
\epsilon \\
\delta
\end{pmatrix}
\]

The Onsager coefficients have the right symmetries (derived from time-reversal);

\[\Delta S \rightarrow 0 \text{ for } \tau \rightarrow \infty \]
Onsager coefficients in the 2V Model

\[\Delta S = J_1 \epsilon + J_2 \delta \]

- In the linear regime: 2V

\[
\begin{pmatrix}
J_1 \\
J_2
\end{pmatrix}
= A \left(\frac{2\pi}{\tau} \right)
\begin{pmatrix}
\sin \phi \left(\frac{2\pi}{\tau} \right) & -\cos \phi \left(\frac{2\pi}{\tau} \right) \\
\cos \phi \left(\frac{2\pi}{\tau} \right) & \sin \phi \left(\frac{2\pi}{\tau} \right)
\end{pmatrix}
\begin{pmatrix}
\epsilon \\
\delta
\end{pmatrix}
\]

- The Onsager coefficients have the right symmetries (derived from time-reversal);
Onsager coefficients in the 2V Model

\[\Delta S = J_1 \epsilon + J_2 \delta \]

- In the linear regime: 2V

\[
\begin{pmatrix}
J_1 \\
J_2
\end{pmatrix} = A \left(\frac{2\pi}{\tau} \right)
\begin{pmatrix}
\sin \phi \left(\frac{2\pi}{\tau} \right) & - \cos \phi \left(\frac{2\pi}{\tau} \right) \\
\cos \phi \left(\frac{2\pi}{\tau} \right) & \sin \phi \left(\frac{2\pi}{\tau} \right)
\end{pmatrix}
\begin{pmatrix}
\epsilon \\
\delta
\end{pmatrix}
\]

- The Onsager coefficients have the right symmetries (derived from time-reversal);

- \(\Delta S \to 0 \) for \(\tau \to \infty \).
Onsager Coeff. in the molecular model

J_1 vs δ ($\tau=30$)
J_2 vs ε ($\tau=30$)
J_1 vs δ ($\tau=100$)
J_2 vs ε ($\tau=100$)
J_1 vs δ ($\tau=1000$)
J_2 vs ε ($\tau=1000$)
J_1 vs δ ($\tau=4000$)
J_2 vs ε ($\tau=4000$)

τ

L_{12}
Efficiency at maximum power

- Efficiency:

\[\eta = - \frac{W}{Q_{in}} \leq \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta \]

where \(\delta = \frac{T_H - T_C}{T_H + T_C} \).
Efficiency at maximum power

- Efficiency:

\[\eta = -\frac{W}{Q_{in}} \leq \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta \]

where \(\delta = \frac{T_H - T_C}{T_H + T_C} \).

- Carnot efficiency is attained only in the quasi-static limit \(\tau \to \infty \ldots \)
Efficiency at maximum power

- Efficiency:

\[\eta = - \frac{W}{Q_{in}} \leq \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta \]

where \(\delta = \frac{T_H - T_C}{T_H + T_C} \).

- Carnot efficiency is attained only in the quasi-static limit \(\tau \to \infty \ldots \)

- \ldots but when \(\tau = \infty \), the output power vanishes!
Efficiency at maximum power

Efficiency:

\[\eta = -\frac{W}{Q_{in}} \leq \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta \]

where \(\delta = \frac{T_H - T_C}{T_H + T_C} \).

- Carnot efficiency is attained only in the quasi-static limit \(\tau \to \infty \ldots \)
- \(\ldots \) but when \(\tau = \infty \), the output power vanishes! \(\Rightarrow \)
- \(\tilde{\eta} = \text{Efficiency at max. power}: \)
Efficiency at maximum power

- Efficiency:

\[\eta = - \frac{W}{Q_{in}} \leq \eta_C = 1 - \frac{T_C}{T_H} \approx 2\delta \]

where \(\delta = \frac{T_H - T_C}{T_H + T_C} \).

- Carnot efficiency is attained only in the quasi-static limit \(\tau \to \infty \ldots \)

- \(\ldots \) but when \(\tau = \infty \), the output power vanishes! \(\Rightarrow \)

- \(\tilde{\eta} = \) Efficiency at max. power: \(\ldots \) but maximum with respect to which parameter????
Efficiency at maximum power: General
Results in the Linear Regime

- Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

- Violated outside the linear regime (Schmiedl and Seifert, EuroPhys. Lett. (2008)).

What about the time τ of the cycle?
Efficiency at maximum power: General Results in the Linear Regime

Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

1. Symmetry of Onsager coefficients: $L_{12} = L_{21}$
Efficiency at maximum power: General Results in the Linear Regime

- Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

1. Simmetry of Onsager coefficients: $L_{12} = L_{21}$

2. Strong Coupling: $L_{12} \approx \sqrt{L_{11}L_{22}}$;
Efficiency at maximum power: General Results in the Linear Regime

- Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

1. Symmetry of Onsager coefficients: $L_{12} = L_{21}$

2. Strong Coupling: $L_{12} \sim \sqrt{L_{11}L_{22}}$;

$$\tilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_c}{2}$$

Violated outside the linear regime (Schmiedl and Seifert, EuroPhys. Lett. (2008))

What about the time τ of the cycle?
Efficiency at maximum power: General Results in the Linear Regime

Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

1. Symmetry of Onsager coefficients: $L_{12} = L_{21}$, $L_{12} = -L_{21}$

2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11}L_{22}}$;

$$\tilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_c}{2}$$
Efficiency at maximum power: General
Results in the Linear Regime

- Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

 1. Symmetry of Onsager coefficients: $L_{12} = -L_{21}$

 2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11} L_{22}}$; Depends on τ!

 \[\tilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_c}{2} \]
Efficiency at maximum power: General Results in the Linear Regime

Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

1. Symmetry of Onsager coefficients: $L_{12} = L_{21}$, $L_{12} = -L_{21}$

2. Strong Coupling: $L_{12} \approx \sqrt{L_{11}L_{22}}$; Depends on τ!

$$\tilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_c}{2} \quad (?)$$
Efficiency at maximum power: General Results in the Linear Regime

- Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

 1. Symmetry of Onsager coefficients: $L_{12} = -L_{21}$
 2. Strong Coupling: $L_{12} \approx \sqrt{L_{11}L_{22}}$; Depends on τ!

 $\tilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_c}{2}$ ($?$)

- Violated outside the linear regime (Schmiedl and Seifert, EuroPhys. Lett. (2008))
Efficiency at maximum power: General Results in the Linear Regime

- Max. with respect to $\epsilon \propto \Delta F$ (Van Den Broeck, Phys. Rev. Lett. (2005)):

 1. Symmetry of Onsager coefficients: $L_{12} = L_{21}$, $L_{12} = -L_{21}$

 2. Strong Coupling: $L_{12} \simeq \sqrt{L_{11}L_{22}}$; Depends on τ!

\[
\tilde{\eta} \leq \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_c}{2}
\]

- Violated outside the linear regime (Schmiedl and Seifert, EuroPhys. Lett. (2008))

- What about the time τ of the cycle?
Efficiency at τ-maximum power

Power: $w = -\frac{W}{\tau} = -\epsilon \frac{T_0 J_1}{\tau}$

Efficiency: $\eta = -\frac{2\epsilon J_1}{J_2} \to 2\delta \; \tau \to \infty$
Efficiency at τ-maximum power

Power: $w = -\frac{W}{\tau} = -\epsilon \frac{T_0 J_1}{\tau}$

Efficiency: $\eta = -\frac{2\epsilon J_1}{J_2} \rightarrow 2\delta \quad \tau \rightarrow \infty$

Efficiency at maximum w with respect to τ at different values of ϵ
Efficiency at τ-maximum power

Power: $w = -\frac{W}{\tau} = -\epsilon \frac{T_0 J_1}{\tau}$

Efficiency: $\eta = -\frac{2\epsilon J_1}{J_2} \rightarrow 2\delta \quad \tau \rightarrow \infty$

Efficiency at maximum w with respect to τ at different values of ϵ
- Rich phenomenology (due to $N \neq 1$);
- Fluctuating thermodynamic quantities (due to $N \neq \infty$);
- Non trivial Langevin description (e.g. impossible to define energy from the Lang. Eq.).

A good insight into the thermodynamics of small systems!
Thank you for the attention!